

Government of Nepal

Nepal Rural Road Standards (2055)

1st Revision

Ministry of Federal Affairs and Local Development

Department of Local Infrastructure Development and Agricultural Roads (DOLIDAR)

September 2012

Contents

1 BACKGROUND 1 2 DEFINITIONS 1 3 RURAL ROAD CLASSIFICATION 2 4 TERRAIN CLASSIFICATION 2 5 TRAFFIC 2 5 TRAFFIC 2 5 TRAFFIC 2 5.1 Vehicle type and dimension 3 5.2 Equivalency Factors 3 5.3 Design Capacity 4 6 CROSS SECTION 5 6.1 Carriage Way Width: 5 6.2 Shoulder Width 5 6.3 Road way width 6 6.3 Road way width 6 6.4 Netholder Width 5 6.3 Road way width 6 7 RIGHT OF WAY (RoW) 9 8 STOPPING SIGHT DISTANCE 10 9 LATERAL AND VERTICAL CLEARANCE 11 9.1 Lateral clearance 11 9.2 Vertical Clearance 11 10.4 HORIZONTAL ALIGNMENT 11 10.5	Contents
3 RURAL ROAD CLASSIFICATION 2 4 TERRAIN CLASSIFICATION 2 5 TRAFFIC 2 5.1 Vehicle type and dimension 3 5.2 Equivalency Factors 3 5.3 Design Capacity 4 5.4 Design Speed: 4 6 CROSS SECTION 5 6.1 Carriage Way Width: 5 6.2 Shoulder Width 5 6.3 Road way width 6 7 RIGHT OF WAY (RoW) 9 8 STOPPING SIGHT DISTANCE 10 9 LATERAL AND VERTICAL CLEARANCE 11 9.1 Lateral clearance 11 9.2 Vertical Clearance 11 10.4 HORIZONTAL ALIGNMENT 11 10.1 Super elevation 13 11 10.2 Minimum Curve Radius 12 10.3 Widening of Curve 13 11 10.2 Minimum Curve Radius 12 10.3 Widening of Curve 13 11	1 BACKGROUND
4 TERRAIN CLASSIFICATION 2 5 TRAFFIC 2 5.1 Vehicle type and dimension 3 5.2 Equivalency Factors 3 5.3 Design Capacity 4 5.4 Design Speed: 4 6 CROSS SECTION 5 6.1 Carriage Way Width: 5 6.2 Shoulder Width 5 6.3 Road way width 6 7 RIGHT OF WAY (RoW) 9 8 STOPPING SIGHT DISTANCE 10 9 LATERAL AND VERTICAL CLEARANCE 11 9.1 Lateral clearance 11 9.2 Vertical Clearance 11 10.4 HORIZONTAL ALIGNMENT 11 10.1 Super elevation 13 11 HAIPPIN BEND 13 12 VERTICAL ALIGNMENT 14 12.1 Gradient 14 12.2 Vertical curve 15 12.3 Summit Curve 15 12.4 Valley Curve 16 <td< td=""><td>2 DEFINITIONS</td></td<>	2 DEFINITIONS
5 TRAFFIC 2 5.1 Vehicle type and dimension 3 5.2 Equivalency Factors 3 5.3 Design Capacity 4 5.4 Design Speed: 4 6 CROSS SECTION 5 6.1 Carriage Way Width: 5 6.2 Shoulder Width 5 6.3 Road way width 6 7 RIGHT OF WAY (RoW) 9 8 STOPPING SIGHT DISTANCE 10 9 LATERAL AND VERTICAL CLEARANCE 11 9.1 Lateral clearance 11 9.2 Vertical Clearance 11 10 HORIZONTAL ALIGNMENT 11 10.1 Super elevation 11 10.2 Minimum Curve Radius 12 10.3 Widening of Curve 13 11 HAIRPIN BEND 13 12 VERTICAL ALIGNMENT 14 12.2 Vertical curve 15 12.3 Summit Curve 15 12.4 Valley Curve 16	3 RURAL ROAD CLASSIFICATION
5.1 Vehicle type and dimension 3 5.2 Equivalency Factors 3 5.3 Design Capacity 4 5.4 Design Speed: 4 6 CROSS SECTION 5 6.1 Carriage Way Width: 5 6.2 Shoulder Width 5 6.3 Road way width 6 7 RIGHT OF WAY (RoW) 9 8 STOPPING SIGHT DISTANCE 10 9 LATERAL AND VERTICAL CLEARANCE 11 9.1 Lateral clearance 11 9.2 Vertical Clearance 11 10.4 HORIZONTAL ALIGNMENT 11 10.2 Minimum Curve Radius 12 10.3 Widening of Curve 13 11 HAIRPIN BEND 13 12 VERTICAL ALIGNMENT 14 12.2 Vertical curve 15 12.3 Summit Curve 15 12.4 Valley Curve 16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS 16 14 CAMBER CROSS	4 TERRAIN CLASSIFICATION
5.2 Equivalency Factors 3 5.3 Design Capacity 4 5.4 Design Speed: 4 6 CROSS SECTION 5 6.1 Carriage Way Width: 5 6.2 Shoulder Width 5 6.3 Road way width 6 7 RIGHT OF WAY (RoW) 9 8 STOPPING SIGHT DISTANCE 10 9 LATERAL AND VERTICAL CLEARANCE 11 9.1 Lateral clearance 11 9.2 Vertical Clearance 11 10.4 HORIZONTAL ALIGNMENT 11 10.2 Minimum Curve Radius 12 10.3 Widening of Curve 13 11 HAIRPIN BEND 13 12 VERTICAL ALIGNMENT 14 12.1 Gradient 14 12.2 Vertical curve 15 12.3 Summit Curve 15 12.4 Valley Curve 16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS 16 14 CAMBER CROSS SLOPE	
5.3 Design Capacity 4 5.4 Design Speed: 4 6 CROSS SECTION 5 6.1 Carriage Way Width: 5 6.2 Shoulder Width 5 6.3 Road way width 6 7 RIGHT OF WAY (RoW) 9 8 STOPPING SIGHT DISTANCE 10 9 LATERAL AND VERTICAL CLEARANCE 11 9.1 Lateral clearance 11 9.2 Vertical Clearance 11 10.4 HORIZONTAL ALIGNMENT 11 10.1 Super elevation 11 10.2 Minimum Curve Radius 12 10.3 Widening of Curve 13 11 HAIRPIN BEND 13 12 VERTICAL ALIGNMENT 14 12.1 Gradient 14 12.2 Vertical curve 15 12.3 Summit Curve 15 12.4 Valley Curve 16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS 16 14 CAMBER CROSS SLOPE	5.1 Vehicle type and dimension
5.4 Design Speed: 4 6 CROSS SECTION 5 6.1 Carriage Way Width: 5 6.2 Shoulder Width 5 6.3 Road way width 6 7 RIGHT OF WAY (RoW) 9 8 STOPPING SIGHT DISTANCE 10 9 LATERAL AND VERTICAL CLEARANCE 11 9.1 Lateral clearance 11 9.2 Vertical Clearance 11 10.4 HORIZONTAL ALIGNMENT 11 10.1 Super elevation 11 10.2 Minimum Curve Radius 12 10.3 Widening of Curve 13 11 HAIRPIN BEND 13 12 VERTICAL ALIGNMENT 14 12.1 Gradient 14 12.2 Vertical curve 15 12.3 Summit Curve 15 12.4 Valley Curve 16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS 16 14 CAMBER CROSS SLOPE 17 15 PASSING ZONE AND LAY-BYS <td>5.2 Equivalency Factors</td>	5.2 Equivalency Factors
6 CROSS SECTION 5 6.1 Carriage Way Width: 5 6.2 Shoulder Width 5 6.3 Road way width 6 7 RIGHT OF WAY (RoW) 9 8 STOPPING SIGHT DISTANCE 10 9 LATERAL AND VERTICAL CLEARANCE 11 9.1 Lateral clearance 11 9.2 Vertical Clearance 11 10.4 HORIZONTAL ALIGNMENT 11 10.5 Widening of Curve 13 11 HAIRPIN BEND 13 12 VERTICAL ALIGNMENT 14 12.1 Gradient 14 12.2 Vertical curve 15 12.3 Summit Curve 15 12.4 Valley Curve 16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS 16 14 CAMBER CROSS SLOPE 17 15 PASSING ZONE AND LAY-BYS 17	5.3 Design Capacity
6.1 Carriage Way Width: .5 6.2 Shoulder Width .5 6.3 Road way width .6 7 RIGHT OF WAY (RoW) .9 8 STOPPING SIGHT DISTANCE .10 9 LATERAL AND VERTICAL CLEARANCE .11 9.1 Lateral clearance .11 9.2 Vertical Clearance .11 9.2 Vertical Clearance .11 10 HORIZONTAL ALIGNMENT .11 10.1 Super elevation .11 10.2 Minimum Curve Radius .12 10.3 Widening of Curve .13 11 HAIRPIN BEND .13 12 VERTICAL ALIGNMENT .14 12.2 Vertical curve .15 12.3 Summit Curve .15 12.4 Valley Curve .16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS .16 14 CAMBER CROSS SLOPE .17 15 PASSING ZONE AND LAY-BYS .17	5.4 Design Speed:
6.2 Shoulder Width 5 6.3 Road way width 6 7 RIGHT OF WAY (RoW) 9 8 STOPPING SIGHT DISTANCE 10 9 LATERAL AND VERTICAL CLEARANCE 11 9.1 Lateral clearance 11 9.2 Vertical Clearance 11 9.2 Vertical Clearance 11 10 HORIZONTAL ALIGNMENT 11 10.1 Super elevation 11 10.2 Minimum Curve Radius 12 10.3 Widening of Curve 13 11 HAIRPIN BEND 13 12 VERTICAL ALIGNMENT 14 12.1 Gradient 14 12.2 Vertical curve 15 12.3 Summit Curve 15 12.4 Valley Curve 16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS 16 14 CAMBER CROSS SLOPE 17 15 PASSING ZONE AND LAY-BYS 17	6 CROSS SECTION
6.3 Road way width	6.1 Carriage Way Width:
7 RIGHT OF WAY (RoW) .9 8 STOPPING SIGHT DISTANCE .10 9 LATERAL AND VERTICAL CLEARANCE .11 9.1 Lateral clearance .11 9.2 Vertical Clearance .11 10 HORIZONTAL ALIGNMENT .11 10.1 Super elevation .11 10.2 Minimum Curve Radius .12 10.3 Widening of Curve .13 11 HAIRPIN BEND .13 12 VERTICAL ALIGNMENT .14 12.1 Gradient. .14 12.2 Vertical curve .15 12.3 Summit Curve .15 12.3 Summit Curve .16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS .16 14 CAMBER CROSS SLOPE .17 15 PASSING ZONE AND LAY-BYS .17	6.2 Shoulder Width
8 STOPPING SIGHT DISTANCE 10 9 LATERAL AND VERTICAL CLEARANCE 11 9.1 Lateral clearance 11 9.2 Vertical Clearance 11 10 HORIZONTAL ALIGNMENT 11 10.1 Super elevation 11 10.2 Minimum Curve Radius 12 10.3 Widening of Curve 13 11 HAIRPIN BEND 13 12 VERTICAL ALIGNMENT 14 12.1 Gradient 14 12.2 Vertical curve 15 12.3 Summit Curve 15 12.4 Valley Curve 16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS 16 14 CAMBER CROSS SLOPE 17 15 PASSING ZONE AND LAY-BYS 17	6.3 Road way width
9 LATERAL AND VERTICAL CLEARANCE 11 9.1 Lateral clearance 11 9.2 Vertical Clearance 11 10 HORIZONTAL ALIGNMENT 11 10.1 Super elevation 11 10.2 Minimum Curve Radius 12 10.3 Widening of Curve 13 11 HAIRPIN BEND 13 12 VERTICAL ALIGNMENT 14 12.1 Gradient 14 12.2 Vertical curve 15 12.3 Summit Curve 15 12.3 Summit Curve 16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS 16 14 CAMBER CROSS SLOPE 17 15 PASSING ZONE AND LAY-BYS 17	7 RIGHT OF WAY (RoW)
9.1 Lateral clearance 11 9.2 Vertical Clearance 11 10 HORIZONTAL ALIGNMENT 11 10.1 Super elevation 11 10.2 Minimum Curve Radius 12 10.3 Widening of Curve 13 11 HAIRPIN BEND 13 12 VERTICAL ALIGNMENT 14 12.1 Gradient 14 12.2 Vertical curve 15 12.3 Summit Curve 15 12.4 Valley Curve 16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS 16 14 CAMBER CROSS SLOPE 17 15 PASSING ZONE AND LAY-BYS 17	8 STOPPING SIGHT DISTANCE
9.2 Vertical Clearance 11 10 HORIZONTAL ALIGNMENT 11 10.1 Super elevation 11 10.2 Minimum Curve Radius 12 10.3 Widening of Curve 13 11 HAIRPIN BEND 13 12 VERTICAL ALIGNMENT 14 12.1 Gradient 14 12.2 Vertical curve 15 12.3 Summit Curve 15 12.4 Valley Curve 16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS 16 14 CAMBER CROSS SLOPE 17 15 PASSING ZONE AND LAY-BYS 17	9 LATERAL AND VERTICAL CLEARANCE
10 HORIZONTAL ALIGNMENT 11 10.1 Super elevation. 11 10.2 Minimum Curve Radius. 12 10.3 Widening of Curve 13 11 HAIRPIN BEND. 13 12 VERTICAL ALIGNMENT. 14 12.1 Gradient. 14 12.2 Vertical curve. 15 12.3 Summit Curve. 15 12.4 Valley Curve. 16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS. 16 14 CAMBER CROSS SLOPE. 17 15 PASSING ZONE AND LAY-BYS. 17	9.1 Lateral clearance
10.1 Super elevation. 11 10.2 Minimum Curve Radius. 12 10.3 Widening of Curve. 13 11 HAIRPIN BEND. 13 12 VERTICAL ALIGNMENT. 14 12.1 Gradient. 14 12.2 Vertical curve. 15 12.3 Summit Curve. 15 12.4 Valley Curve. 16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS. 16 14 CAMBER CROSS SLOPE. 17 15 PASSING ZONE AND LAY-BYS. 17	9.2 Vertical Clearance
10.2 Minimum Curve Radius 12 10.3 Widening of Curve 13 11 HAIRPIN BEND 13 12 VERTICAL ALIGNMENT 14 12.1 Gradient 14 12.2 Vertical curve 15 12.3 Summit Curve 15 12.4 Valley Curve 16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS 16 14 CAMBER CROSS SLOPE 17 15 PASSING ZONE AND LAY-BYS 17	10 HORIZONTAL ALIGNMENT
10.3 Widening of Curve 13 11 HAIRPIN BEND 13 12 VERTICAL ALIGNMENT 14 12.1 Gradient 14 12.2 Vertical curve 15 12.3 Summit Curve 15 12.4 Valley Curve 16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS 16 14 CAMBER CROSS SLOPE 17 15 PASSING ZONE AND LAY-BYS 17	10.1 Super elevation
11 HAIRPIN BEND. 13 12 VERTICAL ALIGNMENT. 14 12.1 Gradient. 14 12.2 Vertical curve. 15 12.3 Summit Curve. 15 12.4 Valley Curve. 16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS. 16 14 CAMBER CROSS SLOPE. 17 15 PASSING ZONE AND LAY-BYS. 17	10.2 Minimum Curve Radius
12 VERTICAL ALIGNMENT. 14 12.1 Gradient. 14 12.2 Vertical curve. 15 12.3 Summit Curve. 15 12.4 Valley Curve. 16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS. 16 14 CAMBER CROSS SLOPE 17 15 PASSING ZONE AND LAY-BYS. 17	10.3 Widening of Curve
12.1 Gradient. 14 12.2 Vertical curve. 15 12.3 Summit Curve. 15 12.4 Valley Curve 16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS 16 14 CAMBER CROSS SLOPE 17 15 PASSING ZONE AND LAY-BYS 17	11 HAIRPIN BEND
12.2 Vertical curve. 15 12.3 Summit Curve. 15 12.4 Valley Curve 16 13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS 16 14 CAMBER CROSS SLOPE 17 15 PASSING ZONE AND LAY-BYS 17	12 VERTICAL ALIGNMENT
12.3Summit Curve1512.4Valley Curve1613CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS1614CAMBER CROSS SLOPE1715PASSING ZONE AND LAY-BYS17	12.1 Gradient
12.4Valley Curve1613CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS1614CAMBER CROSS SLOPE1715PASSING ZONE AND LAY-BYS17	12.2 Vertical curve
13CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS1614CAMBER CROSS SLOPE1715PASSING ZONE AND LAY-BYS17	12.3 Summit Curve
14 CAMBER CROSS SLOPE 17 15 PASSING ZONE AND LAY-BYS 17	12.4 Valley Curve
15 PASSING ZONE AND LAY-BYS	13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS
	14 CAMBER CROSS SLOPE
15.1 Passing Zone	15 PASSING ZONE AND LAY-BYS
	15.1 Passing Zone
15.2 Lay-bys	15.2 Lay-bys

22/02 &

16	CARRIAGEWAY WIDTH AT CULVERT / BRIDGE	18
17	LEVEL OF ROAD EMBANKMENT ABOVE HFL	18
18	TRAFFIC SIGNS AND ROAD SAFETY	18
19	RELAXATION OF RURAL ROAD DESIGN STANDARD.	19

ABBREVIATIONS AND ACRONYMS

DDC	District Development Committee
DoLIDAR	Department of Local Infrastructure Development and Agricultural Roads
DoR	Department of Road
DRCN	District Road (Core Network)
DTMP	District Transport Master Plan
DTO	District Technical Office
GoN	Government of Nepal
HFL	Highest Flood Level
HQ	Head Quarter
IRC	Indian Road Congress
Km/hr	Kilometre per Hour
LRN	Local Road Network
m	Metre
NRRS	Nepal Rural Road Standard
PCU	Passenger Car Unit
RoW	Right of Way
SEACAP	South East Asia Community Access Programme
SWAp	Sector Wide Approach
VDC	Village Development Committee
vpd VR	Vehicle Per Day Village Road
VA	vinage toau

RIOS 9

1 BACKGROUND

The Nepal Rural Road Standards (NRRS) were introduced in 2055 to set the classification and geometric design standards for the Local Road Network (LRN) to be followed by all those involved in the development of the network, including Users, User Committees, VDCs, DDCs, DTOs, DOLIDAR and its development partners.¹

It was revised in 2010 during the preparation of interim guidelines for District Transport Master Plan (DTMP) for the SWAp Pilot Districts, when existing district roads were reclassified as District Roads 'A' and all previous village roads were reclassified as District Roads "B" with no change in their geometric design parameters.

In March 2012 the Nepal Road Sector Assessment Study was completed together with recommendations regarding simplifying the DTMP to make it easier to understand, cheaper to implement and less time consuming. This review concluded that LRN investment should change its approach to new construction and concentrate on upgrading to a core network of maintainable, all-weather roads linking the District Centre to the VDC HQ's office or growth centre. This core district road network is defined as the minimum network necessary to ensure maintainable, all-weather access to all VDC HQs. If VDC HQs have not yet been connected to this network, new roads will need to be constructed. All roads not included in the core network will become village roads.

The all-weather construction of the core network has meant that the design speeds of the district roads has had to be increased and this has prompted a review of the geometric design standards for LRN. It has also provided DOLIDAR with the opportunity to make changes designed to tackle issues relating to road safety, climate change and disaster risk reduction.

2 DEFINITIONS

Camber – is the convexity given to the cross section of the surface of the carriageway to facilitate drainage

Horizontal Curve – is the curve in plan to change the direction of the centreline of a road

Vertical Curve – is a curve in longitudinal section of a roadway to provide for easy and safe change of gradient

Hairpin bend – is a bend in alignment resulting in reversal of direction of flow of traffic. A bend may be of reversing road direction on same face of hill slope.

Ruling minimum radius of curve – is the minimum radius of curvature of the centreline of a curve necessary to negotiate a curve at ruling minimum design speed

¹ The standards for Strategic Road Network – National Highways, Feeder Roads, which are under the jurisdictions of Department of Roads (DoR) are excluded in this document but are available in the 'Nepal Road Standard (2027) – Second Revision'.

Absolute minimum radius of curve – is the minimum radius of centreline of a curve necessary to negotiate a curve at absolute minimum design speed.

Ruling gradient – is the maximum gradient within which designer attempt to design the vertical profile of a road.

Limiting gradient – is gradient steeper than a ruling gradient and may be used in restricted lengths where maintaining ruling gradient is not feasible

Exceptional gradient – is a steeper than a limiting gradient, which may be used in short stretches only in extraordinary situation

Roadway width – is the sum total of carriageway width and shoulder width on either side. It is exclusive of parapets and side drains

Road lane width - refers to the width of carriageway of the road in terms of traffic lane.

Formation width - is the finished width of earthwork in fill or cut

Sight distance – is the distance along the road surface at which a driver can see objects (stationary or moving) at a specified height above the carriageway.

Super elevation – is the inward tilt or transverse inclination given to the section of a carriageway on a horizontal curve to reduce the effects of centrifugal force on a moving vehicle. Super elevation is generally expressed as a slope.

3 RURAL ROAD CLASSIFICATION

District Road (Core network) - An important road joining a VDC HQ's office or nearest economic centre to the district headquarters, via either a neighbouring district headquarters or the Strategic Road Network.

Village Road - Smaller roads not falling under District Road (Core Network) category are Village Roads, including other Agriculture Road.

4 TERRAIN CLASSIFICATION

A simple classification of Terrain into 'Terai' and 'Hill' is adopted based on the topography of country. While classifying terrain, short isolated stretches of varying terrain should not be taken into consideration. Generally, 'Terai' covers the plain and rolling terrain and varies from 0 to 25 percent cross slope, 'Hills' covers mountainous and steep terrain and varies from 25 to 60 percent and more.

5 TRAFFIC

It is not financially viable to improve the standard of a rural transport link by a small margin since the heavy cost involved is not justified by the marginal benefits. Therefore, it is the accepted practice to design and construct new transport links or upgrade the existing ones using a traffic volume which is anticipated at some future date. For rural

transport linkages in Nepal, the period shall be 10 years ² i.e. the road shall be design with a capacity sufficient to cope with the estimated traffic volume 10 years after the date of completion of the works.

5.1 Vehicle type and dimension

In Nepal the most commonly used vehicles are of Indian make. Vehicle types adopted here are 'Type-2 both single tire and dual tire' having two axles and the maximum axel weight is 10.2 tonnes for rear axle with the following dimension.

Width - overall width 2.5 m

Height - 3.8 m for normal application

Length of wheel base - 6.1 m

Length - maximum overall length excluding front and rear bumpers, 11 m.

(Source: IRC: 64-1990)

5.2 Equivalency Factors

The result of the presence of slow moving vehicles in a traffic stream is that it affects the free flow of traffic. A way of accounting for the interaction of various kinds of vehicles is to express the capacity of a road in terms of a common unit such as the 'passenger car unit'. Tentative equivalency factors for conversion of different types of vehicles into equivalent passenger cars units are given in the Table below. These factors are meant for open sections and should not be applied to road intersections.

SN	Vehicle Type	Equivalency Factor
1	Car, Light Van, jeeps and Pick Up	1.0
2	Light Truck up to 2.5 tonnes gross	1.5
3	Truck up to 10 tonnes gross	3.0
4	Truck up to 15 tonnes gross	4.0
5	4W Tractor towed trailers -standard	3.0
6	2W Tractor towed trailers -standard	1.5
7	Bus up to 40 passengers, Minibus	3.0
8	Bus over 40 passengers	4.0
9	Motorcycle or scooter	0.5
10	Bicycle	0.5

S

Table 1-Equivalency Factor

² Considered same as Nepal Rural Road Standard (2055)

SN	Vehicle Type	Equivalency Factor
11	Rickshaw and Tricycle carrying goods	1.0
12	Auto Rickshaw	0.75
13	Hand Cart	2.0
14	Bullock Cart with Tire	6.0
15	Bullock Cart with Wooden Wheel	8.0
16	Mule or Horse drawn carts	6.0
17	Pack Animal and mules	2.0
18	Pedestrian	0.2
19	Porter	0.40

(Source: Nepal Rural Road Standard, 2055)

5.3 Design Capacity

It is advisable to design the width of a road pavement for a given traffic volume so that it meets the Level of Service B, defined as a stable flow zone which affords reasonable freedom to drivers in terms of speed selection and manoeuvres within the traffic stream. At this level, the volume of traffic will be around 0.5 times the maximum capacity. This is the 'design service volume' for the purpose of adopting design values.

Design Parameters	District Road (Core network)		Village Road	
	Hill	Terai	Hill	Terai
Design Capacity –in both directions (Vehicle per day/PCU per day)	200 (400)	400 (800)	100 (200)	200 (400)

(Source: Nepal Rural Road Standard, 2055)

5.4 Design Speed:

Design speed is one of the basic parameters that determine geometric design features. The choice of design speeds is linked to terrain and road function and is shown in the table below. Normally ruling design speed should be the guiding criterion for the purpose of geometric design. Minimum design speed may, however, be adopted where the site condition and cost does not permit a design based on 'Ruling Design Speed'

H	lills	Т	erai
Ruling	Minimum	Ruling	Minimum
25 20		50 40	
	15		30
	Ruling 25	0	RulingMinimumRuling252050

6 CROSS SECTION

6.1 Carriage Way Width:

The width of the carriageway depends on: The dimensions of vehicles using the road, Speed of travel, Traffic volume, Width of shoulder

For district road (core network) with low volume of traffic (< 100 vpd), single lane operation is adequate as there will be only a small probability of vehicles meeting. The low number of passing manoeuvres can be undertaken at reduced speeds using either passing place (in Hill) and shoulders (in Terai), providing sight distance are adequate for safe stopping. These manoeuvres can be performed without hazards and overall loss in efficiency brought about by the reduced speeds will be small as only a few such manoeuvres will be involved. It is not cost effective to widen the running surface in such circumstances and a basic width of 3.0 m will normally suffice.

Carriage way width of District Road (core network) is 3.75 m but can be reduced to 3 m where traffic volume is less than 100 motorized vehicles per day and where the traffic is not likely to increase.

If a village Road carries a traffic volume of more than 100 motorized vehicles per day, the carriageway width will be 3.75 m and affect other design parameters accordingly.

In the case of built up/market area, extra width of pavement for pedestrians and lay-bys can be considered with covered drains, which will be sufficient for parking other motorized and non-motorized vehicles.

For district roads (core network) with a volume of traffic > 400 vpd, single lane width may not be adequate for operation, therefore, should go for higher lane width of 5.5 m.

Desirable road surface for District Road (Core Network) is gravel or paved, whereas, for Village road is unpaved or gravel.

Standard recommended carriageway width of the road is depicted in Table 6.1below.

6.2 Shoulder Width

Shoulder width is measured from the edge of the carriageway to the edge of the usable formation. Wide shoulders have following advantages;

- · Space is available for vehicles to stand clear of the pavement
- Non-motorized traffic/pedestrian can travel with minimum encroachment on carriageway and greater safety.
- Additional manoeuvring space
- The capacity of the road can be increased by providing paved shoulder up to 15%
- Sealing of shoulder reduces maintenance costs and improves moisture condition under pavement

Non-motorized vehicles in hills are smaller than Terai, hence shoulder width in hills are relatively smaller.

Shoulder widths of each type of road are presented in Table 6.1below.

- A

6.3 Road way width

If the available existing road way width is more than that stated below and the carriageway is to be paved, the partial remaining road way width between side drain/ditch and pavement edge can be maintained as hard shoulder and earthen shoulder.

If sufficient road way width is available and substantial movement of pedestrians and non-motorised vehicles occur, special provision should be made in this situation where such flows are significant with respect to the level of motorised vehicles movements. Some localised shoulder improvements may be appropriate as non-motorised traffic generally increases near towns and villages. The following two features are recommended

- > The shoulder should be sealed
- Shoulders should be clearly segregated by the use of edge of carriageway surface marking or other measures.

		Carriageway Width (m)	Shoulder width (m)	Roadway width (m)
		5.5 (if traffic > 400 vpd)	0.75	7.0
District Road	Hill	3.75 (if traffic > 100 vpd)	0.75	5.25
(core network)		3 (if traffic < 100 vpd)	0.75	4.5
		5.5 (if traffic > 400 vpd)	1.0	7.5
	Terai	3.75 (if traffic > 100 vpd)	1.5	6.75
		3 (if traffic < 100 vpd)	1.5	6
Village Road	Hill	3	0.5	4
	Terai	3	0.75	4.5

Table 6.1- Carriageway, Shoulder, and Roadway width.

The above given road way widths exclude drain, parapet and top of retaining wall.

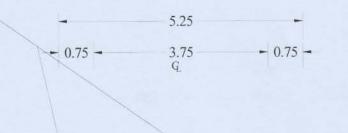


Fig 6.1 District Road - Core Network, Single Lane Road without drain in Hill area

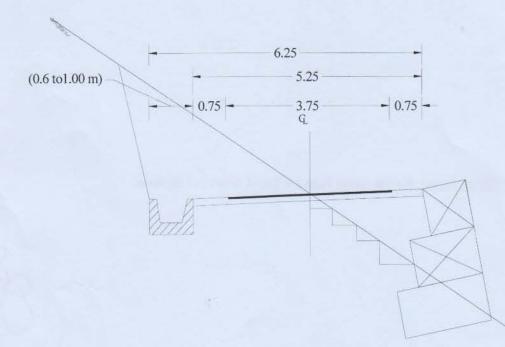


Fig 6.2 District Road -Core Network, Single Lane Road with drain in Hill area

84725 Se 10

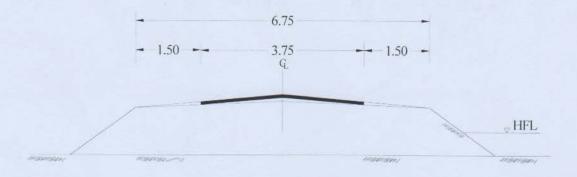


Fig 6.3 District Road - Core Network, Single Lane Road in Terai

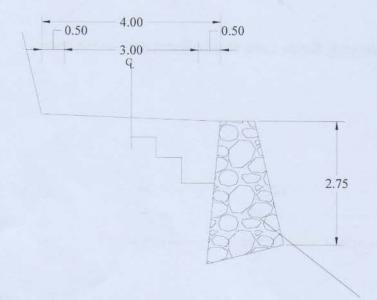


Fig 6.4. Village Road, Single Lane Road without drain in Hill area

B

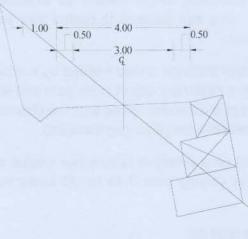


Fig 6.5 Village Road, Single Lane Road with drain in Hill area

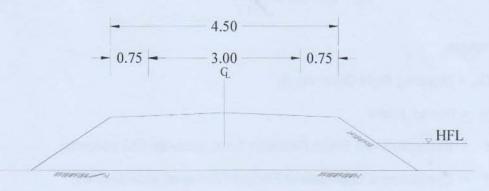


Fig 6.6 Village Road, Single Lane Road in Terai

25/8-

7 RIGHT OF WAY (RoW)

Right of way depends on the importance of a road and possible future development. Recommended total right of way (RoW) and Building line for different types of road are given below:

	Total right of way (RoW) (m)	Setback distance from Road land boundary / (RoW) to Building line on either side (m)	Comment
District Road (Core Network)	20	6	10 m RoW on either side from road centre line
Village Road	15	3	7.5 m Row on either side from road centre line

If in any case the existing Right of Way is more than above defined value, existing available width shall be adopted as a right of way

8 STOPPING SIGHT DISTANCE

Visibility is an important requirement for the safety of travel on the roads. For this it is necessary that sight distance of adequate length should be available in different situations to permit drivers enough time and distance to control their vehicles so that the chances of accident are minimised.

The stopping sight distance is the clear distance ahead needed by a driver to bring his vehicle to a stop before collision with a stationary object in his path and is calculated as the sum of braking distance required at a particular speed plus the distance travelled by the vehicle during perception and brake reaction time (lag distance).

Total reaction time of drivers depends on a variety of factors and a value of 2.5 seconds and coefficient of longitudinal friction varying from 0.40 for 20 km/hr to 0.35 for 100 km/hr.

Stopping Sight Distance (D_S) shall be:

$$D_{\rm S} = 0.278Vt + \frac{V^2}{254f}$$

Where,

D_S = Stopping Sight Distance, m

V = Speed, km/hr

t = Perception and Brake Reaction Time, seconds (2.5 seconds)

f = Coefficient of Longitudinal Friction (Varies as speed varies)

The Safe Stopping Site Distance is provided in Table 8.1

Table 8.1-Safe Stopping Site Distance

Speed, km/hr	Perception and Brake Reaction Time, t (sec)	Coefficient of Longitudinal Friction	Safe Stopping Sight Distance, m
15	2.5	0.4	15
20	2.5	0.40	20
25	2.5	0.40	25
30	2.5	0.40	30
40	2.5	0.38	45
50	2.5	0.37	60

Intermediate Sight Distance

Intermediate sight distance is twice the safe stopping sight distance. It is experienced that intermediate sight distance permits reasonably safe overtaking. Single lane roads should be designed for intermediate sight distance standard because opposing vehicles occupy the same lane. In mountainous and steep terrain, it might be difficult to design the horizontal alignment with intermediate sight distance values.

9 LATERAL AND VERTICAL CLEARANCE

9.1 Lateral clearance

Lateral clearance between roadside objects and the edge of the shoulder should normally be as given below

Hill road – normally 1.0 m but may be reduced to minimum 0.5 m in steep and difficult areas and where the cost of providing the full clearance is high.

Terai road - normally 1.5 m but may be reduced to a minimum of 1.0 m

9.2 Vertical Clearance

A vertical clearance of 5m should be ensured over the full width of roadway at all underpasses, and similarly at overhanging cliffs. The vertical clearance should be measured with reference to the highest point of the carriageway i.e the crown or super elevated edge of the carriageway. However, in the case of overhead wires, poles etc. clearance shall be at least 7.0 m above the road surface.

10 HORIZONTAL ALIGNMENT

Horizontal alignment should be as directional, fluent and match the surrounding topography to avoid abrupt changes. On new roads the curve should be designed to have the largest practical radius generally not less than the ruling value. Radii below absolute minimum should not be provided.

Sharp curves should not be introduced at the end of long tangents, since these can be extremely hazardous.

Design speed, super elevation and coefficient of side friction affect the design of circular curves.

10.1 Super elevation

Super elevation is provided to maintain the design traffic speed at a given radius.

Coefficient of Lateral Friction (f)

The value of the coefficient of lateral force depends basically upon vehicle speed, type and condition of road type and surface as well as the condition of tyres. It is assumed that factor affecting the coefficient (f) are similar in Nepal to neighbouring countries and

thus the value of 'f' is adopted as per IRC recommendation i.e. if the value of 'f' = 0.15, is adopted, the passenger shall not feel discomfort.

Maximum Super Elevation Value

In plain terrain, non-motorized vehicles travel with high centre of gravity, so the maximum value of super elevation shall be limited to the following values;

Terai 7%

Hill 10%

The designer should aim at providing flatter super elevation but it should not be less than thecamber.

10.2 Minimum Curve Radius

On a horizontal curve, the centrifugal force is balanced by the effects of super elevation and side friction. The following formula fulfills the condition of equilibrium:

$$e+f = \frac{V^2}{127R}$$

or

$$R = \frac{V^2}{127(e+f)}$$

Where,

V = Vehicle Design Speed, km/hr

R = Radius, m

e = Super elevation ratio, meter per meter.

f = Coefficient of side (lateral) friction between the vehicle tyres and pavement. A constant value of coefficient of side friction is adopted at 0.15.

The recommended minimum radius value is tabulated in Table 10.1

Table 10.1- Minimum Radius for Horizontal Curve

Super elevation e = 10%Super elevation e = 7%1510	
15 10	
20 12.5	
25 20	~
30 (/ 30	0

40	60
50	90

10.3 Widening of Curve

At sharp horizontal curves, it is necessary to widen the carriageway to provide safe passage of vehicles. Widening is dependent on curve radius, width of carriageway and type of vehicle (length and width).Widening has two components: (1) mechanical widening to compensate for the extra width occupied by the vehicle on the curve due to tracing of the rear wheels, and (ii) psychological widening vehicles in a lane tend to wander more on a curve than on a straight reach.

In single lane roads the outer wheels of vehicles use the shoulders whether on the straight or on a curve. Therefore use of the mechanical component of widening should be sufficient on its own.

For single lane roads, only mechanical widening is required for low traffic speed.

$$W = \frac{L^2}{2R}$$

Where,

W = Widening, m

L = length of wheel base of longest vehicle (m)

R = Radius of horizontal curve, m

The recommended increase in width is given in Table 10.2 below

Table.10.2-Recommended Minimum Widening for Single Lane Road

Curve Radius (m)	Up to 20	21-60	Above 60
Increase in width (for 3 m carriageway) (m)	1.5	0.6	Nil
Increase in width (for 3.75 m carriageway),(m)	0.9	0.6	Nil

11 HAIRPIN BEND

A hair pin bend may be designed as a circular curve with transition at each end. Alternatively, compound circular curves may be provided. The following design criteria should be followed normally for the design of hairpin bends.

Table 11.1 Hairpin Bend Design Criteria

Hill Hill 84 2 Jul 13	0	Hill	Hill
2812 S 12	[/		
	28121	8	

1	Minimum spacing between Hairpin Bends (m)	100 ³	1004
2	Minimum radius of curve (m)	12.5	10
3	Minimum Roadway width at apex (m)	5.5 for a 4.5m roadway width 6.25 for a 5.25m roadway width	5 for a 4m roadway width
4	Maximum gradient (%)	4	4
5	Minimum gradient (%)	0.5 (max 1) ⁵	0.5 (max 1) ⁶
6	Maximum superelevation (%)	10	10
7	Minimum transition curve length (m)	15	15

Hairpin bends should be avoided as far as possible. The designer should locate the hairpin bends at suitable and flatter hill slopes, so that there is sufficient space for the layout of the hairpin bend. Similarly, series of hairpin bends in the same hill face should be avoided. Proper water management needs to be designed so that a disposal of water from the hairpin bend does not cause erosion problems on the slope.

12 VERTICAL ALIGNMENT

12.1 Gradient

The selection of ruling gradient depends on several factors such as type of terrain, length of the grade, speed, pulling power of vehicles and presence of horizontal curves. Recommended gradient for different terrain condition are given in Table 12.1

Table	12.1	Recommended	gradients
-------	------	-------------	-----------

S	Design Standard	District (Core Ne	Road etwork)	Village F	Road
No		Hill	Terai	Hill	Terai
1	Ruling gradient (%)	7	5*	7	5*
2	Limiting gradient (%)	10	6	10	6
3	Exceptional gradient (%)	12	7	12	7
4	Limitation of maximum gradient length (m) above average gradient of 7%	300	-	300	-
5	Maximum recovery gradient (%) to be applied after gradient in excess of 7% for a minimum recovery length of 150 m	4	CHEC	4	-
6	Maximum gradient at bridge approach (%)	6	57	6	5
7	Minimum gradient on hill roads (for better				

³ 100 m spacing is the desirable but it may be less as per site condition

⁴ 100 m spacing is the desirable but it may be less as per site condition

- ⁵ Desirable minimum gradient for this purpose is 0.5%, if the side drains are lined and 1% if unlined.
- $\frac{6}{7}$ Desirable minimum gradient for this purpose is 0.5%, if the side drains are lined and 1% if unlined.
- ⁷ In Terai, if non-motorised vehicles, bullock cart are in the traffic stream, maximum gradient is limited to 3% at bridge approaches.

drainage) (%)	0.5 -	0.5	-
	(max1%)	(max1%)	

If non-motorised vehicles are in significant numbers in the traffic stream then due consideration needs to be given to the pulling power of animal drawn vehicles and the ruling gradient limited to a maximum of 3%.

Whatever gradient used the pavement must have sufficient camber to drain storm water laterally. However, in cut sections or where the pavement is provided with kerbs, it is necessary that the road should have some gradient for efficient drainage. Desirable minimum gradient is 0.5 % if the side drains are lined and 1% if unlined.

Exceptional gradients should be adopted only in very difficult places and unstable locations in short length in hill.

12.2 Vertical curve

Vertical curves are introduced for smooth transition at grade changes. Both summit curve and valley curve should be designed as parabolas. The length of vertical curves is controlled by sight distance requirements, but curves with greater lengths are aesthetically better. Curves should be provided at all grade changes exceeding those given in Table 12.2 and the minimum length as given in the same table.

Design Speed (Kmph)	Maximum grade change (%) not requiring a vertical curve	Minimum length of vertical curve (m)
Up to 35	1.5	15
40	1.2	20
50	1.0	30

Table 12.2. Minimum length of vertical curve

(Source: IRC: 73-1980)

12.3 Summit Curve

The length of summit curves is governed by the choice of sight distance. The length is calculated on the basis of the following formulae

Case	Length of summit curve (m)
	For safe stopping sight distance
When the length of the curve exceed the required sight distance (i.e. L > S)	$L = (N S^2) / (4.4)$
When the length of the curve is less than the required sight distance (i.e L< S)	L = 2S - (4.4)/N

N = deviation angle, i.e the algebraic difference between the two grade

L = Length of parabolic vertical curve (m)

S = stopping sight distance (m)

The above formula has been derived based on the following assumption

Height of driver's eye (H) = 1.2 m (above the pavement surface)

Height of subject above the pavement surface = 0.15 m

12.4 Valley Curve

The length of valley curves should be such that for night travel, the headlight beam distance is equal to the stopping sight distance. The length of curve may be calculated as follows:

Case	Length of summit curve (m)
	For safe stopping sight distance
When the length of the curve exceed the required sight distance (i.e. L > S)	$L = (N S^2) / (1.5 + 0.035 S)$
When the length of the curve is less than the required sight distance (i.e L< S)	L = 2S - (1.5 +0.035 S) / N

Where,

N = deviation angle, i.e the algebraic difference between the two grade

L = Length of parabolic vertical curve (m)

S = stopping sight distance (m)

The above formula has been derived based on following assumption

Head light height = 0.75 m

The beam angle = 1°

Length of summit curve and valley curve for various cases mentioned above can be read from Fig 12.1 and 12.2

13 CO-ORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENTS

The plan and profile of the road should be designed in proper coordination to ensure safety and utility of the road.

16

- **13.1** Sharp horizontal curves should be avoided at or near the apex of the summit, on vertical curves or the lowest point of valley curves.
- **13.2** Horizontal and vertical alignment should coincide with each other as far as possible and their length should be more or less equal. If this is difficult for any reason, the horizontal curve should be somewhat longer than the vertical curve.
- 13.3 The degree of curvature should be in proper balance with the gradients. Excessive curvature in a road with flat grades does not constitute balanced design and should be avoided.

14 CAMBER CROSS SLOPE

Recommended camber cross slope on straight road sections is given in Table 13.1below.

Camber		District Road	(Core Network)	Village Road		
	Hill		Terai	Hill	Terai	
Carriageway	Earthen(existing)	5	5	5	5	
cross slope (%)		4	4	4	4	
	Bituminous Seal Coat	3	3	-	-	

Table 13.1.Recommended camber cross slope

The minimum acceptable value of cross fall should be related to carrying surface water away from the pavement in an effective manner. Considering possible changes in rainfall patterns due to the climate change, cross slopes are 0.5 to 1 per cent steeper than that required where annual rainfall is less than 1000 mm.

Shoulders having the same surface as the carriageway should have the same cross slope. Unpaved shoulders on paved carriageway should be at least 0.5 per cent steeper than the cross fall of the carriageway. However, 1 per cent more slope than the carriageway is desirable.

15 PASSING ZONE AND LAY-BYS

15.1 Passing Zone

The increased width at passing zones should allow two trucks (2 axles) to pass. The width of carriage way should be 5.5 m and length about 12 m along the outside edge and 30 m along inside. This means that passing zones and lay bys should be tapered gradually towards the carriageway so that vehicles can leave or join the traffic stream safely. At passing places, vehicles would be expected to stop or slow to a very low speed.

Normally, passing place should be located every 300 m for Hill and 500 m for Terai. The location of passing place depends on the sight distance and should be provided at or near blind and sharp summit curves; where the likelihood of vehicles meeting between passing places is high; and where reversing would be difficult. In general passing places should be constructed at the most economic location as determined by the terrain and ground condition, such as at transitions from cut to fill, rather than at precise intervals.

15.2 Lay-bys

Lay-bys may be provided for parking or for bus stops to allow vehicles to stop safely without impeding passing traffic. The minimum bus lay-by width shall be 3 m (i.e minimum 6 m carriageway widths) and the length 12 m along the outside edge and 30 m along the inside edge. This means that passing zones and lay bys should be tapered gradually towards the carriageway so that vehicles can leave or join the traffic stream safely.

16 CARRIAGEWAY WIDTH AT CULVERT / BRIDGE

The recommended carriageway width at culverts and bridges is given below

Single lane 4.25 m

Intermediate lane 6 m

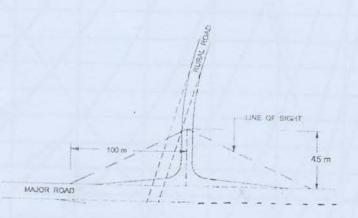
Width is measured from between parapet walls or kerbs and additional width for footpath can be considered as per site requirement and volume of pedestrian flow.

17 LEVEL OF ROAD EMBANKMENT ABOVE HFL

In flat terrain the road embankment should be high enough so that the level of subgrade is above the highest flood level (HFL). HFL at site can be found from inspecting the site and local enquiry. Minimum recommended level of subgrades are given below

For district road (core network)

1 m desirable but minimum is 0.5 m

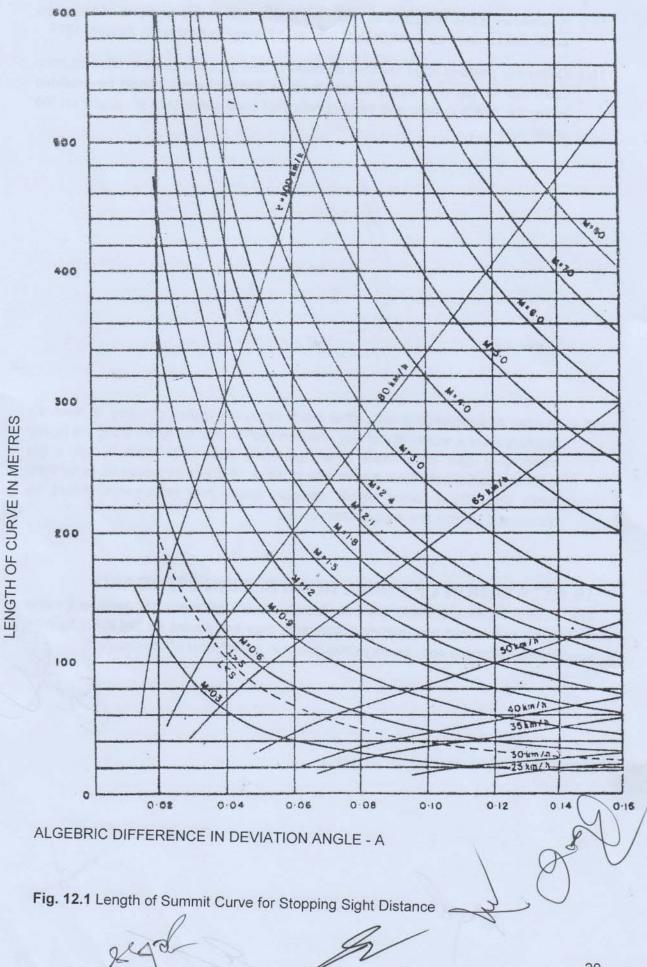

For village road

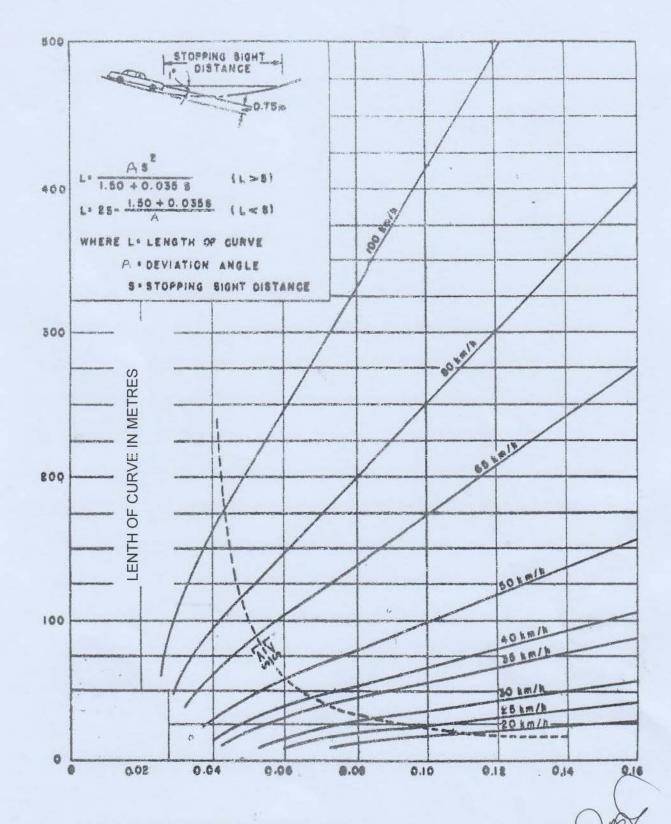
0.5 m (minimum)

18 TRAFFIC SIGNS AND ROAD SAFETY

18.1 Different regulatory and warning signs for narrow road widths; sharp and blind curves; stop signs at junctions should be provided for rural roads thatare in maintainable state. For detailed dimensions refer to the Traffic Manual published by DoR, August 1997.

- 18.2 All-weather roads should have kilometre posts. The shape and size of kilometre posts can be used as given in DoR Standard Design, published in January 1978.
- 18.3 Delineator posts or other low cost delineating devices such as earth filled bitumen drum etc. or low cost safety barrier such as gabion barrier should be provided along the sharp curves and blind curves that have large (> 3 m) drops on the valley side.


18.4 In case of intersections with other road, since the higher category of road will normally have a wider right of way, the intersection is to be flared along the higher category of road. Rural roads should generally meet other roads at right angle junctions and should have a clear line of sight. This is a minimum 45 m for rural roads and 100 m along higher category roads and settlements should be discouraged within this area of intersection.


19 RELAXATION OF RURAL ROAD DESIGN STANDARD

:48L

The recommended standards are intended to provide guidance for designers rather than to be considered rigid minima. Standards may be relaxed by DoLIDAR to meet special circumstances such as very difficult terrain or high cost of construction.

19

ALGEBRIC DIFFERENCE IN DEVIATION ANGLE - A Source: IRC:73-1980 Reprinted on July, 2004

Fig.12.2 Length of Valley Curve

.

28/25

21

R) Comments	······································	00		Given road way width are <u>excluding</u> drain; parapet and top width of retaining wall	•	and pavement edge can be maintained partially as hard shoulder and earthen shoulder	 The carriageway width of District Road (core network) is 3.75 m but it can be reduced to 3 m where traffic intensity is less than 		and difficult terrain.	 Desirable road surface for District Road (Core Network) is gravel or paved, whereas, for Village road is unpaved or gravel. 	 If a village Road carries traffic intensity more than 100 motorised vehicles per day, the carriageway width will be 3.75 m and other parameters upgrade accordingly. 	 District road (core network) with volume of traffic > 400 ADT, single lane width may not be adequate for operation, therefore, should go for higher lane width of 5.5 m 	• • •		A M
Village Road (VR)	Terai	200 (400)	30		4.5			e			0.75		15	e	
Villag	HIH	100 (200)	15		4.0			ო			0.5		15	e	
ad (Core ork)	Terai	400 (800)	Ruling-50 Min -40	7.5	6.75	Q	5.5	3.75	3	٢	1.5	1.5	20	Q	Jord
District Road (Core Network)	ШН	200 (400)	Ruling-25 Min -20	7.0	5.25	4.5	5.5	3.75	3	0.75	0.75	0.75	20	Ø	C
Design Parameters		Design capacity- in both directions(Vpd /P.C.U per day)	Design speed (km per hour)		Road way width (m)		Carriageway width (m)				Shoulder width, either side (m)		Total right of Way (RoW) (m)	Setback distance from Road land boundary / RoW to Building line	
S.N		-	2		0			+			ŝ		ø	7	

0	Comments			Since, opposing vehicle occupies the same lane in single lane road; it should be designed for intermediate site distance. However, it might be difficult to design the horizontal alignment with intermediate sight distance for <u>hill</u> terrain.	5 m vertical clearance should be ensured at all underpasses, and similarly at overhanging cliffs. The vertical clearance should be measured in reference to the highest point of carriageway However, in case of overhead wires, poles etc. shall be at least 7.0 m above the road surface	At sharp horizontal curve, it is necessary to widen the carriageway to provide safe passage of vehicles – refer 10.4 of text part of standard		100 m spacing is desirable but it may be less as per site condition				Desirable minimum gradient for this purpose is 0.5%, if the side drains are lined and 1% if unlined			If non-motorised vehicles are in significant number in traffic stream then due consideration need to be given to the pulling power of animal drawn vehicles and ruling gradient need to be limited up to	John Nol
	Village Road (VR)	Terai		30	Normally-1.5 Min - 1	30									5	Y
	Village F	HII		15	Normally -1 Min - 0.5	10		100	10	5 for 4 roadway width	4	0.5 (max 1)	10	15	7	28/0
	d (Core rk)	Terai		45	Normally- 1.5 Min - 1	Ruling min -90 Min-60									5	
	District Road (Core Network)	HI		20	Normally -1 Min – 0.5	Ruling min -20 Min -12.5		100	12.5	5.5 for 4.5 roadway width 6.25 for 5.25 roadway width	4	0.5 (max 1)	10	15	7	
	Design Parameters		on either side (m)	Minimum safe stopping sight (m)	Lateral Clearance between roadside object and the edge of the shoulder (m)	Minimum radius in horizontal curve (m)	Hairpin Bends	Minimum spacing between Hairpin Bends (m)	Minimum radius of curve (m)	Minimum Road way width at apex (m)	Maximum gradient (%)	Minimum gradient (%)	Maximum super elevation (%)	Minimum transition curve length (m)	Ruling gradient (%)	
	S.N	44-110-m		œ	თ	10				ξ					12	

0	Comments		3%					In terai, If non-motorised vehicle like bullock cart, Tricycle are in traffic stream then maximum gradient limit to 3%	Desirable minimum gradient for this purpose is 0.5%, if the side drains are lined and 1% if unlined	Sharp horizontal curve should be avoided at or near the apex of the summit vertical curve or the lowest point of the valley curve. Horizontal and vertical alignment should coincide with each other as far as possible and their length should be more or less equal. If this is difficult for any reason, the horizontal curve should be somewhat longer than the vertical curve. The degree of curvature should be in proper balance with the gradients. Excessive curvature in a road with flat grades, do not constitute balanced design and should be avoided.	 Shoulder having the same surface as the carriageway should 	have the same cross slope	0.5% steeper than the cross fall of carriageway should be at reast more slope than the carriageway is desirable.	A Del
	Village Road (VR)	Terai		Ø	7	1		Q	1	at or near the coincide with ea horizontal cur ber balance wit avoided.	Q	4	1	1
	Village F	HIH		10	12	300	4	9	0.5(max1)	uld be avoided ment should c iny reason, the ould be in prop and should be	Q	4	1	Ser
	ad (Core ork)	Terai		Ø	7			5	1	Sharp horizontal curve should be avoided at or nee curve. Horizontal and vertical alignment should coincide w equal. If this is difficult for any reason, the horizont The degree of curvature should be in proper balan constitute balanced design and should be avoided.	5	4	3	X
)	District Road (Core Network)	HH		10	12	300	4	9	0.5 (max1)	 Sharp horizo curve. Horizontal a equal. If this The degree constitute b; 	S	4	n	
	Design Parameters			int (%)	adient (%)	Limitation of maximum gradient length (m) above average gradient of 7%	Maximum recovery gradient (%) to be applied after gradient in excess of 7% for a minimum recovery length of 150 m	lient at bridge	Minimum gradient on hill roads (for better drainage) (%)	orizontal and	Earthen(existin g)		Bituminous Seal Coat	
	Design			Limiting gradient (%)	Exceptional gradient (%)	Limitation of maximum gra length (m) above average gradient of 7%	Maximum recovery gradient to be applied after gradient ir excess of 7% for a minimum recovery length of 150 m	Maximum gradient at bridge approach (%)	Minimum gradient on hill (for better drainage) (%)	Co-ordination of h vertical alignment		Cross slope in	camber (%)	
-	S.N			13	14	15	16	17	18	19		20		

0	District Road (Core Village Road (VR) Network) Comments	HIII Terai HIII Terai	The width of carriage way should be 5.5 m and length is about 12 m along outside edge and 30 m along inside i.e towards the carriageway side and each end it should be tapered gradually towards the carriageway.	Minimum bus lay-bys width shall be additional 3 (I,e total min carriageway width is 6 m) and the length is about 12 m along outside edge and 30 m along inside i.e towards the carriageway side and at each end it should be tapered gradually towards the carriageway.	 Lay-bys are provided as an where needed. Lay-bys are provided as an where needed. The location of passing place depends on the sight distance – should provide at or near blind and sharp summit curve; the likelihood of vehicles meeting between passing places; and the potential difficulty of reversing. 	4.25 4.25 • Measured from inside to inside of parapet walls or kerbs	6 6 - Additional width for tootpath can be considered as per site requirement, volume of pedestrian flow.	1 (0.5 min) 1 (0.5 min) 0.5 1 m is desirable but minimum is 0.5 m	Different regulatory and warning signs for narrow road width; sharp and blind curve; stop sign at the junction should be provided in rural roads, which are in maintainable state. For detail dimension follow traffic manual published by DoR, August 1997. All-weather road should have kilometre post. The shape and size of kilometre post can be used as given in DoR standard design, published in January 1978. Delineator post or other low cost delineating device such as earth filled bitumen drum etc. or low cost safety barrier such as gabion barrier should be provided along the sharp curve and blind curve, which has big (> 3 m) drop on valley side. In case of intersection with other road, since the higher category of road will normally have wider right of way provision, the intersection is to be flared along the higher category of road and rural road should generally meet the other road at right angle junction, whereas, it should have clear line of sight, minimum 45 m along the rural road and 100 m along the higher category road of intersection.	And A Dep
0	District Road (Core Network)		The width of carriage way should carriageway side and each end it	Minimum bus lay-bys width shall edge and 30 m along inside i.e to carriageway.					 Different regulatory and warr provided in rural roads, which 1997. All-weather road should have design, published in January Delineator post or other low o gabion barrier should be prov gabion barrier should be prov in case of intersection with o intersection is to be flared ald junction, whereas, it should h road and should discourage. 	Ala
	Design Parameters		Passing Zone, Dimensions (width x length) (m x m)	Lay-bys. Dimension (width x Length) (m x m)	passing zone strips at interval of (m) (maximum)	Carriageway width at culvert/bridge (m) (Single lane)	Carriageway width at culvert/bridge (m) (Intermediate lane)	Level of embankment above HFL (m)	Traffic sign and road safety	
× *	S.N			21	22		23	24	25	

12)]
2
2069 (201
3
2069 (
6
90
ñ
2
0
S
Revisior
O
R
ti
1 s
ù
).
(055), [1 st
3
N
-
D
a
ö
Ē
3
to
~
D
Roal
Ň
-
a
1
2
-
a
Q
C
Z

Comments/Feedbacks from stakeholder consultation workshop (20 July 2012) and proposed actions

Commente/Feedbacks	Actions
Road classification has covered motorable roads only, not incorporated non motorable transport such as Main trail,	Revision of Nepal Rural Road Standard (2055) focused on motorable roads only, whereas, non motorable transport linkage classification
village trail, Kopeway etc. Proposed design speed is suitable	remains same until turther next revision. NA
The required traffic volume, which should be minimum100 vpd to apply 3.75 m carriageway width, is high. Recommendation is to reduce traffic volume and further	1 10 05
suggested to use PCU instead of vpd.	The PCU concept is very useful but does not help to resolve all of the geometric design problems, especially those associate with rural roads and also recommended reference value is also given in vpd not in PCU.
Right of way of DRCN need to be increased, proposed value - 10 m on either side is less	All together right of way is 20 m, which is sufficient to accommodate changes proposed in road width, therefore, proposed no changes in RoW.
Carriageway width of 3.75 to 5.5 meter should be provided	Accepted
Free board for structures like culverts, bridges in hills area should be more than 1 m and return period of 50 years should be considered.	"Free board from HFL" does not intend for free board for structure. It defines the height of subgrade level from the HFL of embankment. Now, the description is corrected as " level of subgrade from HFL of road embankment is 1 m desirable but minimum is 0.5 m"
Standards of main trail need to be incorporated	This revision is mainly focused on motor able road and main trail will be separately addressed.
Road width should be 3.75 m if traffic volume is > 200 & 5.5 m if it is > 600 ADT instead of 100 and 400 ADT respectively.	100 and 400 ADT for 3.75 and 5.5 m respective road width are based on IRC-SP-20 Rural Road Manual and Overseas Road Note 6, hence retained as it is.
Suggested to change description "Right of Way 20m and 15 m in total for District Road Core Network and Village Road respectively" instead of saving "Right of way either	Accepted and revised accordingly.

3/0/88

Xero

Frovision or pavement euging to be considered prick stone)	pavement edging can be used, which will be decided at the time of design and it should be covered by design manual /guideline
Bridge width is fine as proposed in standards, but Culvert width need to be same as carriageway width	Difference between Culvert width and carriageway width is 0.5 m (+) and this is adopted for traffic safety
Lay byes and passing zone transition should be flattened for easy entering of vehicles	To flatten the transition for easy entering of vehicles, dimension is now changed as "the length is about 12 ¹ m along outside edge and 30 m along inside i.e. towards the carriageway side" and at each end it should be tapered gradually towards the carriageway so that vehicles can leave or re-ioin the traffic stream safely.
Definition of District Road Core Network (DRCN) need to be rephrased so that important road joining one VDC to other VDC may falls under DRCN.	This type of case may arise under exception in some situation. However, DRCN defines road joining from VDC HQ's office/growth Centre to the district headquarters and to the SRN.
Building lines should be defined	Setback distance from Road land boundary (Row) to Building line on either side are: DR-CN - 6 m (reference Nepal Road Standard 2027, First revision-2045) Village Road - 3 m (reference IRC: SP:20-2002) Note: This may not be applicable in settlement / market area, where roads have already been constructed
Guideline for selection of road surface type – blacktopped, gravelled & earthen based on traffic volume need to be added.	This has been addressed by revised DTMP guideline, 2012.
Need to be added that bridge should have one side foot path Limitation of max gradient length 300 m for greater than 7% is more. It should be reduced(for 7-10%=300 m and for 10-12%=100 m)	Footpath can be considered as per site requirement and volume of pedestrian flow and shall be guided by bridge design manual. Existing Feeder road standard of DoR and draft final revision of Nepal Road Standard DoR referred the same, what is used in revised NRRS (2055) i.e. "maximum gradient length above 7% is 300 m". Since in the future; these DRCN may get upgrade to feeder road, hence it is quiet rational to use the same.
Strategic Road Network and Local Road Network How to Strategic Road Network and Local Road Network How to link for the future development and demarcation-when LRN is to be upgraded to SRN specially what standard to be adopted in such case	Specially, vertical geometric parameters of DRCN has been revised keeping in mind that it is very difficult to change at the time of upgrade, therefore, the revised vertical gradient parameter meet the exiting feeder road standard and in future DRCN can easily be upgraded to

¹ Minimum 12 m is considered to fit the overall dimension of 11m vehicle.

m Je 12

G

Need of cover drain, extra widening, bus stop, road sign, and road marking	Provisioned for cover drain, extra widening, lay byes, road sign in built up area.
Cross drainages more pragmatic -number of cross	added " Sufficient number of cross drainage need to be provided to
drainage per Km, to address the need of irrigating the	discharge surface run off as per site requirement and also considering
adjoining area, addressing need of utilities if necessary	irrigation facilities of the adjoin area"
Safety parameters addressing specially at sharp curve	Extra widening is already there, now added provision for safety barrier
and grade (blind curve) - extra widening, safety barrier, noad sign	and road sign.
Axle load - define axle load for road, load controlling	Defined maximum axle weight which is 10.2 tonne for rear axle dual
mechanism	tyres for Type 2 vehicle type. (reference IRC 3-1983)
Service area -to discourage ribbon settlement, economic	Added "in case of intersection with other road, since the higher
activities, bus stop and parking, utilities such as gas	category of road will normally have wider right of way provision, the
station shops tea stalls	intersection is to be flared along the higher category of road and rural
Road access where to provide and intersection design -	road should generally meet the other road at right angle junction.
to keep the road capacity, decrease traffic conflict,	whereas, it should have clear line of sight, minimum 45 m along the
enhance safety, especially by providing merging and	rural road and 100 m along the higher category road and should
diverging lane at the intersection, discourage settlement development and bus stop as well as shops	discourage settlement development within this area of intersection".
Regulatory body - coordinate with SRN and LRN,	DoLIDAR supports and take up this issue
Oversight design parameters, oversee the new access apart form that provided in design	
Amendment of Public Roads act - define the road levels	DoLIDAR supports and take up this issue
especially administrative and functional classification,	

I

Clarification – cross section without drain represents the rock cutting area, where it is difficult to get road width. Feedback from group discussion Suggested -not to propose cross section without drain in figure

987 2

U

Sers/

3